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Abstract: The distributed denial of service attack poses a significant threat to network security. Despite
the availability of various methods for detecting DDoS attacks, the challenge remains in creating
real-time detectors with minimal computational overhead. Additionally, the effectiveness of new
detection methods depends heavily on well-constructed datasets. This paper addresses the critical
DDoS dataset creation and evaluation domain, focusing on the cloud network. After conducting an
in-depth analysis of 16 publicly available datasets, this research identifies 15 shortcomings across
various dimensions, emphasizing the need for a new approach to dataset creation. Building upon
this understanding, this paper introduces a new public DDoS dataset named BCCC-cPacket-Cloud-
DDoS-2024. This dataset is meticulously crafted, addressing challenges identified in previous datasets
through a cloud infrastructure featuring over eight benign user activities and 17 DDoS attack scenarios.
Also, a Benign User Profiler (BUP) tool has been designed and developed to generate benign user
network traffic based on a normal user behavior profile. We manually label the dataset and extract
over 300 features from the network and transport layers of the traffic flows using NTLFlowLyzer.
The experimental phase involves identifying an optimal feature set using three distinct algorithms:
ANOVA, information gain, and extra tree. Finally, this paper proposes a multi-layered DDoS detection
model and evaluates its performance using the generated dataset to cover the main issues of the
traditional approaches.

Keywords: distributed denial of service (DDoS); cloud-based DDoS; network traffic dataset; cloud-
based network traffic analysis; network layer traffic analysis; transport layer traffic analysis; network
traffic characterization; DDoS dataset

1. Introduction

The DDoS attack poses a significant threat to network security, aiming to overwhelm
target networks with malicious traffic [1]. Detecting and mitigating DDoS attacks pose
considerable challenges due to their sophisticated and dynamic nature [2,3]. Traditional
detection methods often struggle to accurately identify and stop DDoS attacks in real time,
primarily because of their inability to distinguish between legitimate and malicious traffic
among the flood of incoming packets. Moreover, as cyber attackers continually evolve
tactics, traditional detection mechanisms become increasingly ineffective in identifying
newly emerging DDoS attack variants [4,5]. Consequently, there is a growing recognition
of the need to leverage artificial intelligence (AI) techniques to enhance DDoS detection
capabilities [6,7].

AI-based methods, including machine learning (ML) and deep learning (DL) algo-
rithms, rely heavily on data to learn and discern various network behaviors associated with
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different network activities. However, the effectiveness of these detection methods hinges
on the availability of high-quality and comprehensive datasets for training and evaluation
purposes. Therefore, at the heart of advancing DDoS detection methods capabilities lies the
availability of reliable and comprehensive evaluation datasets [8].

However, creating and preparing datasets for DDoS detection entails a multifaceted
process that demands meticulous planning, execution, and expertise. Establishing the
infrastructure for dataset creation requires setting up an isolated environment that accu-
rately mimics real-world network conditions while ensuring scalability, reliability, and
security, demanding deep knowledge of network architecture and system administration.
Generating representative traffic patterns and attack scenarios necessitates a comprehensive
understanding of cyber threats and network protocols, and orchestrating the generation of
benign and malicious traffic in a controlled manner demands sophisticated tools. Rigorous
analysis is imperative to extract meaningful insights and validate dataset quality, requiring
advanced anomaly detection and classification algorithms. Without clear planning and
execution, the resulting dataset may lack fidelity and fail to adequately represent real-
world scenarios, undermining the effectiveness of DDoS detection algorithms. Therefore,
ensuring the integrity and comprehensiveness of the dataset creation process is critical for
advancing DDoS detection capabilities and enhancing network security.

This research addresses the critical domain of DDoS dataset generation and evaluation,
emphasizing the pivotal role of well-constructed datasets in enhancing the efficacy of DDoS
detection and characterization algorithms and systems. Through an exhaustive analysis
of 16 publicly available datasets, we identify significant shortcomings across various
dimensions, underscoring the imperative for a novel approach to dataset development. By
shedding light on the challenges and deficiencies in existing datasets, this research aims
to pave the way for creating more reliable and comprehensive DDoS datasets, thereby
advancing state-of-the-art DDoS detection and mitigation strategies.

Drawing upon this foundational understanding, the pioneering contribution in this
work is the introduction of a new cloud-based DDoS dataset named BCCC-cPacket-Cloud-
DDoS-2024 [9]. The development of this dataset involves a comprehensive examination
of diverse aspects, ranging from attack trends to the generation of benign user traffic and
behavior profiling. The paper proposes a roadmap for creating a network traffic dataset. A
cloud infrastructure featuring eight distinct benign activities and 17 varied DDoS attack
scenarios is established to tackle challenges extracted from previous datasets. Also, a Benign
User Profiler (BUP) [10] tool is designed and implemented for generating network traffic
based on benign user behavior. The dataset is manually labeled, and over 300 features are
extracted from the network and transportation layers of the network traffic flows using the
Network and Transportation Layers Flow Analyzer (NTLFlowLyzer) [11].

Next, to dataset creation, this research proposes a network traffic characterization
model to detect different network activities. In crafting a robust detection model, we
advocate a multi-layered approach to maximize cost effectiveness. The first layer focuses
on distinguishing benign traffic from non-benign activity, while subsequent layers identify
specific network behaviors for detailed classification. This approach enhances efficiency
and minimizes computational costs.

Finally, the experimental evaluations using the generated dataset validate the efficacy
of the proposed detection model in accurately identifying various network activities. The
proposed model demonstrates strong performance through extensive testing against di-
verse DDoS attack scenarios and benign activities, highlighting its potential to strengthen
network security defenses.

The main contributions of this research are:

• Introducing BCCC-cPacket-Cloud-DDoS-2024 [9], a new cloud-based DDoS dataset.
• Design and development of a Benign User Profiler (BUP) [10] tool to generate benign

background traffic.
• Design and development of a DDoS characterization model.
• Introducing the cloud-based network traffic dataset creation roadmap.
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The paper is organized as follows: Section 2 provides background information and
delves into the relevant literature. Section 3 explains the different steps involved in creating
a network dataset. Section 4 details the construction process of the new dataset, detailing
each step involved in its creation. Section 5 expounds upon the traffic characterization
model proposed in this study. The findings from the experimental endeavors are outlined
in Section 6. Section 7 offers a thorough analysis and interpretation of the experimental
results. Lastly, Section 8 concludes the paper by summarizing key insights and delineating
potential avenues for future research in this domain.

2. Literature Review

This section reviews existing research in this domain, including available cloud-based
DDoS attack detection, traffic analysis models, and available DDoS network traffic datasets.
Finally, the section highlights the shortcomings of the previous works and the areas where
the current literature could be improved.

2.1. Cloud-Based DDoS Attack Detection and Traffic Analysis

In recent years, the proliferation of cloud computing has introduced new challenges in
ensuring the security and availability of cloud network resources [12]. Among these chal-
lenges, DDoS attacks targeting cloud infrastructures have emerged as a significant concern
due to their potential to disrupt network services and exhaust server resources [13]. This
section focuses on cloud-based DDoS attack detection through traffic analysis, discussing
various approaches proposed in the literature to mitigate this threat.

To begin with, ref. [14] proposes a DDoS detection system based on the C4.5 algo-
rithm and signature detection techniques to enhance security in cloud environments. In
a similar work, by [15], the authors introduce the Scattered Denial-of-Service Mitigation
Tree Architecture (SDMTA), tailored for hybrid cloud environments. Their architecture
integrates network monitoring for efficient detection and mitigation of DDoS attacks. In a
more straightforward study, by [16], the authors propose a solution leveraging machine
learning algorithms like support vector machine, naive Bayes, and random forest for DDoS
attack classification in cloud environments.

In another study, by [17], they propose integrating HTTP GET flooding and MapRe-
duce processing for rapid DDoS attack detection in cloud computing environments. In
another study, by [13], the authors address the challenge of identifying the sources of
DDoS attacks in cloud environments, proposing a third-party auditor (TPA)-based packet
trace-back approach. Leveraging Weibull distribution for analysis, their solution aims to
provide efficient attack alerts and mitigate the impact of attacks on cloud users.

In [18], the authors tackle the challenge of detecting low-rate DDoS attacks resembling
normal traffic flow. Their proposed solution utilizes soft computing techniques, including
hidden Markov models (HMMs) and random forest algorithms, demonstrating improved
classification accuracy in cloud environments. In another study, by [3], they propose a
feature selection–whale optimization algorithm–deep neural network (FS-WOA-DNN)
method for DDoS attack detection, emphasizing effective feature selection and classifica-
tion techniques.

Lastly, ref. [19] develop a DDoS detection system integrated with OpenStack, employ-
ing machine learning algorithms and raw socket programming for monitoring network
traffic. Their system effectively identifies and notifies administrators about DDoS attacks in
private cloud environments, showing promising results in experimental evaluations.

Despite the advancements in cloud-based DDoS attack detection and traffic analysis,
several limitations persist across existing works. Notably, the lack of publicly available
datasets restricts the proposed solutions’ reproducibility and comparative analysis. Ad-
ditionally, many studies rely on synthetic or limited datasets, which may not accurately
reflect real-world cloud attack scenarios. Moreover, challenges such as the adaptability
of detection systems to evolving attack strategies, scalability issues in large-scale cloud
environments, and the potential for false positives/negatives pose ongoing challenges for
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researchers and practitioners in this domain. Future research efforts should address these
limitations to enhance the robustness and effectiveness of DDoS detection mechanisms in
cloud environments.

2.2. Available DDoS Attack Datasets

In the dynamic realm of network security, the progress and assessment of DDoS attacks
heavily rely on the availability and quality of datasets [20,21]. Recognizing the limitations
and strengths of existing datasets is pivotal for researchers seeking to advance the field.
For this, we have analyzed the top publicly available DDoS datasets in the literature,
enumerated as follows. Evaluating these datasets is vital for shaping the conception of
innovative datasets, exemplified by the DDoS dataset under consideration in this paper.
The objective is to aid in recognizing areas for improvement and lay the groundwork for
developing more robust and representative datasets in the DDoS domain.

1. KDD99 1998-99 [22];
2. CAIDA (2004) [23];
3. CAIDA (2007) [24];
4. CAIDA (2017) [25];
5. CAIDA (2021) [26];
6. CDX (2009) [27];
7. Kyoto (2009) [28];
8. ISCX2012 [29];
9. ADFA (2013) [30];
10. CTU-13 [31];
11. UNSW-NB15 [32];
12. CIC-IDS2017 [33];
13. CSE-CIC-IDS2018 [34];
14. CIC-DDoS2019 [35];
15. SR-BH 2020 [36];
16. CUPID (2022) [37].

While previous datasets have significantly contributed to the advancement of DDoS
research, it is crucial to acknowledge and address their inherent limitations. Recognizing
these shortcomings underscores the importance of developing new datasets, such as the
DDoS dataset generated in this research, to overcome existing challenges and propel the
field forward. By learning from the successes and pitfalls of previous works, researchers
can inform the design of more realistic and comprehensive datasets, ultimately fostering
the development of more effective and adaptable DDoS detection methods. Below, we have
compiled a list highlighting the shortcomings identified in the previous datasets based on
the works of [8,35,38].

1. Imbalanced class distribution: The imbalanced class distribution in datasets often
mirrors real-world scenarios, where certain DDoS attacks are more prevalent than
others. Addressing this limitation is vital as it ensures that detection models are
trained on data that accurately reflects the wild attacks’ distribution.

2. Limited diversity of attacks: Datasets with limited diversity fail to capture the
full spectrum of DDoS attacks encountered in real-world networks. This shortfall
hampers the effectiveness of detection methods by neglecting to train models on a
comprehensive range of attack types and techniques.

3. Outdated threat scenarios: The inclusion of outdated threat scenarios in datasets may
lead to the development of ill-equipped detection models to handle emerging DDoS
threats. This limitation highlights the need for datasets that continuously evolve to
reflect the evolving landscape of DDoS attacks in real-world environments.
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4. Lack of Realistic Network Traffic: Realistic network traffic patterns are essential
for training accurate DDoS detection models. Datasets lacking such traffic fail to
capture network behavior’s intricacies, hindering detection methods’ effectiveness in
real-world deployment scenarios.

5. Absence of encrypted traffic: With an increasing prevalence of encryption in net-
work communications, datasets lacking encrypted traffic fail to simulate real-world
conditions accurately. Including encrypted traffic in datasets is crucial for effectively
training detection models capable of handling encrypted DDoS attacks.

6. Insufficient labeling accuracy: Inaccurate labeling of data instances undermines the
reliability of datasets and, consequently, the effectiveness of detection models trained
on them. Ensuring high labeling accuracy is paramount to developing robust DDoS
detection mechanisms.

7. Limited incorporation of user behavior: User behavior plays a significant role in
DDoS attack detection, yet datasets often overlook this aspect. Incorporating user
behavior data into datasets enhances the reality of training data, leading to more
effective detection models in real-world scenarios.

8. Incompatibility with modern protocols: Datasets that do not support modern net-
work protocols fail to reflect the current state of network communications. Ensuring
compatibility with modern protocols is essential for developing detection models that
address contemporary DDoS threats.

9. Limited exploration of low-rate DDoS attacks: Low-rate DDoS attacks pose unique
challenges that are usually overlooked in datasets. By exploring these attack types,
datasets can better prepare detection models to identify and mitigate low-rate DDoS
attacks in real-world scenarios.

10. Lack of realistic DDoS traffic variability: Variability in DDoS traffic patterns is
essential for training robust detection models capable of adapting to evolving attack
strategies. Datasets lacking such variability fail to prepare detection mechanisms for
real-world deployment adequately.

11. Absence of hybrid DDoS scenarios: Hybrid DDoS attacks combine multiple attack
vectors, presenting complex challenges for detection and mitigation. Including hy-
brid attack scenarios in datasets is crucial for training detection models capable of
identifying and mitigating these sophisticated threats.

12. Insufficient exploration of DDoS amplification techniques: Datasets often overlook
the exploration of DDoS amplification techniques, which attackers commonly use to
magnify the impact of their attacks. Understanding and mitigating these techniques
requires datasets that adequately represent such attack scenarios.

13. Inadequate representation of application-layer DDoS attacks: Application-layer
DDoS attacks target specific services or applications, posing unique challenges for
detection and mitigation. Datasets must include instances of application-layer attacks
to train detection models effectively.

14. Non-Inclusion of insider threats: Insider threats present a significant risk to network
security, yet datasets often overlook this threat vector. Including instances of insider
threats in datasets is essential for training detection models capable of identifying and
mitigating such risks.

15. Absence of multi-modal data: Multi-modal data, incorporating various data types
such as network traffic, system logs, and user behavior, provides a more comprehensive
view of DDoS attacks. Datasets lacking multi-modal data fail to capture the complexity
of real-world attack scenarios, limiting the effectiveness of detection models.

Recognizing the importance of overcoming these limitations, this research aims to
address the first ten challenges outlined in this analysis.

3. Dataset Creation Roadmap

Network dataset creation is a fundamental aspect of network security research, en-
abling the evaluation and validation of defense mechanisms against cyber threats. The
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process involves careful planning, infrastructure setup, data generation, and analysis to sim-
ulate real-world scenarios accurately. In this work, we present a comprehensive roadmap
for creating network datasets, addressing the challenges and intricacies encountered at
each stage.

Establishing a structured framework and roadmap for dataset creation is paramount
due to the complexity of the task. A well-defined roadmap streamlines the process, ensuring
systematic progression from initial conception to the final dataset. It provides researchers
with a clear direction, facilitates collaboration, and enhances reproducibility, fostering
advancements in network security research.

Creating a network dataset poses formidable challenges owing to network traffic’s
dynamic and heterogeneous nature. The general roadmap is illustrated in Figure 1. In the
following, we explain each step highlighted in the roadmap:

1. Scope Definition
Firstly, defining the scope of the target network demands a deep understanding of the
specific environment under study, such as an e-commerce company network encom-
passing diverse user interactions and transactions. This necessitates comprehensive
data collection and analysis, often complicated by the sheer volume and variety of
network activities.

2. Infrastructure Preparation
The preparation of infrastructure, whether cloud-based or otherwise, constitutes a
critical initial step in dataset creation. A robust infrastructure ensures scalability,
reliability, and performance, essential for generating and analyzing network traffic
data. However, configuring and maintaining the infrastructure can be arduous,
requiring expertise in network administration and resource optimization to mitigate
potential bottlenecks and ensure seamless operation.

3. Defining Users and Entities
Defining the corresponding users and entities within the network, along with their
respective profiles, is essential for generating realistic traffic patterns. This involves cat-
egorizing users based on their roles, behaviors, and privileges and identifying network
entities such as servers, clients, and applications. However, accurately characteriz-
ing user profiles and entity interactions poses challenges, particularly in large-scale
networks with diverse user demographics and complex system architectures.

4. Designing Benign Traffic Generator
A benign traffic generator design based on the defined user profiles is crucial for sim-
ulating legitimate, realistic, and real-world network activities. However, developing
an effective traffic generator balances realism with efficiency and scalability. Gener-
ating diverse and realistic traffic patterns while avoiding bias or over-representing
specific user behaviors requires careful consideration of traffic generation and profile
definition, often necessitating iterative refinement and validation.

5. Studying Attack Trends
Analyzing historical attack trends is essential for understanding prevalent threats and
vulnerabilities in network environments. However, identifying relevant attack vectors
and trends amidst evolving cyber threats can be challenging, requiring continuous
monitoring and analysis of security incidents and threat intelligence sources. More-
over, extrapolating past attack trends to anticipate future threats necessitates robust
analytical frameworks and predictive modeling techniques.

6. Attack Selection and Implementation
Selecting suitable attack scenarios and implementing them within the network envi-
ronment involve various complexities. Identifying realistic attack scenarios that align
with the network’s characteristics and threat landscape requires in-depth knowledge
of common attack methodologies and their potential impact on network infrastruc-
ture. Furthermore, developing and deploying attack implementations necessitates
expertise in security testing methodologies and adherence to ethical considerations to
prevent unintended consequences or system compromise.
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7. Data Capturing and Analysis
Capturing raw network data in the form of PCAP files is essential for capturing the
intricacies of network traffic and facilitating subsequent analysis. However, capturing
and storing network traffic data at scale poses challenges regarding data volume,
storage capacity, and processing overhead. Moreover, ensuring the integrity and
confidentiality of captured data while adhering to privacy regulations requires robust
data anonymization and encryption mechanisms.

8. Development of Traffic Analyzer
Designing and developing a network traffic analyzer to convert raw PCAP files into
analyzed data (e.g., CSV files) is crucial for extracting meaningful insights from cap-
tured network traffic. However, developing an efficient and accurate traffic analyzer
addresses various technical challenges, such as packet parsing, protocol decoding,
and traffic classification. Additionally, ensuring the scalability and reliability of the
analyzer across diverse network environments and traffic patterns requires rigorous
testing and optimization.

9. Data Labeling and Testing
Labeling the resulting dataset and conducting comprehensive testing and analysis
is essential for validating the quality and reliability. However, manually labeling
network traffic data for attack and benign activities can be labor intensive and error-
prone, necessitating automated labeling techniques and human validation processes.
Moreover, thorough testing and analysis of the dataset against predefined metrics
and ground truth scenarios are crucial for assessing its effectiveness in simulating
real-world network conditions and evaluating defense mechanisms.

1- Scope Definition 2- Infrastructure
Preparation

3- Defining Users
and Entities

4- Designing Benign
Traffic Generator

5- Studying Attack
Trends

6- Attack Selection
and Implementation

7- Data Capturing
and Analysis

8- Development of
Traffic Analyzer

9- Data Labeling and
Testing

Figure 1. Network dataset creation roadmap.

In conclusion, creating network datasets requires a structured and systematic approach
encompassing various stages, from infrastructure setup to data analysis and validation.
Despite the challenges encountered at each step, a well-defined roadmap facilitates the
generation of high-quality datasets, essential for advancing network security research
and enhancing cybersecurity defenses. By addressing these challenges and adopting
best practices, researchers can simulate real-world network environments effectively and
develop robust defense strategies against emerging cyber threats.

4. The New Dataset

This section discusses the details of the generated dataset, named BCCC-cPacket-
Cloud-DDoS-2024 [9]. The discussion starts with an explanation of the infrastructure and
attack scenarios. Then, we discuss benign scenarios and the definitions of benign user
behaviors in this work. Finally, this section provides the data analyzed from the Network
and Transportation Layers Flow Analyzer (NTLFlowLyzer) [11] and the dataset details.
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4.1. Infrastructure

The proposed cloud architecture and its intended utilization are outlined in this
section, providing an overview of the selected approach and justifying the design of such a
cloud architecture. The proposed architecture in Figure 2 shows a comprehensive network
configuration to present a real-world corporate environment. This architecture is designed
to emulate the complexities and vulnerabilities inherent in such environments, including
the potential for DDoS attacks. We have structured the architecture within this environment
to reflect typical organizational dynamics. The victim’s VPC represents the internal network
of a typical company. It includes four Windows machines for daily normal user activities,
such as web browsing and email checking. These users exemplify the end-users typical of
the company’s operational environment.

Cloud Architecture

Victim's VPC

Public subnet

Admin (Linux)Users (Windows)

Public subnet

Capturer

Internet

Servers' VPC

Public subnet

SSH Server FTP Server TELNET Server

1
7

65

9

8 1 Victims' Network. Comprises of 4 Windows 10
users, one Linux (Ubuntu 22.04) administrator,
and one Linux web server. An instance of the
Benign User Network Profiling executes on each
machine (with different profile configurations). 

Internet Gateway. All traffic (benign and attack)
going to and coming from the Victim's Network 
passes through this gateway.

5

Traffic Mirroring Service. Mirrors all traffic to
the Capturer machine.

4

Capturer. Captures all the traffic in PCAP files.

6

7
Remote Server's Network. Includes different
machines that are used by the Benign User
Network Profiling. Each machine has a public IP
address accessible over the internet.

8

Internet. DDoS attacks launch from outside the
network of the victim (which is the internet in
this case).  Additionally, Victim's and Remote
Server's networks have internet access.

Web Server

2 3 4

Users. Engage in typical network activities such
as email and website browsing, etc. 

Admin. The administrator, in addition to normal
activities, performs standard administrative tasks
such as connecting to SSH or Telnet servers,
pinging addresses, and downloading and
uploading files to an S/FTP server.

2

3 Web Server. A nginx web server, representing a
company web server.

9

10

10 Attacker. Third party attacking through the
internet.

Figure 2. Cloud architecture.

Notably, the system introduces an administrator user with standard user activities and
advanced administrative functions. The administrative tasks assigned to the administrator
involve establishing secure connections to remote machines and employing protocols such
as SSH or TELNET. Additionally, the administrator engages in FTP and SSH activities
on remote servers. Specific servers, such as the SSH and TELNET servers, have been
strategically placed in a dedicated virtual private cloud (VPC) named “Servers VPC” to
facilitate these administrative functions.

Moreover, the critical infrastructure, such as the web server, resides alongside other
machines in the victim’s VPC used for hosting the company website using the Nginx
web application. The architecture leverages the AWS Traffic Mirroring service to ensure
comprehensive monitoring of network activities, reflecting our commitment to enhancing
the visibility of potential security threats within the local network. Microsoft Windows
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Server 2022 has been employed as the operating system for server machines, while the web
server, administrator, and capturer machines are Ubuntu Server 22.04 LTS.

It is imperative to mention that the architecture incorporates an attacker component
responsible for executing attacks through the internet. A third-party service has been
engaged to carry out these attacks. Noteworthy is the absence of mitigation services or
firewalls impeding network traffic, aligning with the simulated vulnerability of the corpo-
rate environment under study. Also, public service ports, including 80, 443, 22, etc., have
been opened on each machine to mimic real-world conditions. Furthermore, all routing
tables, ACL groups, and security groups permit the passage of all traffic, contributing to
the realism of the simulation.

4.2. Attack Scenarios

While this study primarily focuses on DDoS attack scenarios targeting the victim’s
VPC, we acknowledge the possibility of broader attack vectors beyond the scope of the
investigation in this work. Labeling the non-benign data outside the scheduled attack
scenarios as “suspicious” underscores the awareness of potential threats from the internet.
The attack scenarios section concentrates on the orchestrated execution of diverse attacks,
including identifying attack types, the number of attacks, and their scheduling. This
strategic approach involves launching 17 TCP-based DDoS attacks targeting the designated
system, which are as follows:

• TCP-SYN-Valid;
• TCP-bypassV1;
• TCP-KILLALL-V2;
• TCP-IGMP;
• TCP-SYN;
• KILLER-TCP;

• TCP-CONTROL;
• TCP-Flag-MIX;
• TCP-Flag-SYN;
• TCP-Flag-SYNACK;
• TCP-Flag-ACK;
• TCP-Flag-ACKPSH;

• TCP-Flag-RSTACK;
• TCP-Flag-SYNTIME;
• TCP-Flag-SYNTFO;
• TCP-Flag-OSYN;
• TCP-Flag-OSYNP.

These attacks are diligently chosen to cover a broad spectrum of attack types, ensuring
a thorough assessment of system resilience. The dataset web page [9] explains each attack
scenario and provides further details. Specific timeframes are allocated for each attack to
maintain a structured and manageable methodology. Each attack spans twenty minutes,
followed by a ten-minute rest interval. The rest interval avoids the traffic overlap from
two attacks, as sometimes the attacks will not be finished on time. Potential complications
during the subsequent labeling procedure are mitigated by allowing for a resting period
after each attack. This fact has been considered in the labeling process as well.

This deliberate scheduling optimizes data collection and streamlines the subsequent
labeling process. The detailed schedule for the attack scenarios is provided in Table A1. It
is important to emphasize that background traffic was still collected throughout the attack
periods to simulate the real-world scenario, enabling us to differentiate and analyze benign
and attack traffic simultaneously.

4.3. Benign User Profiling

This subsection outlines the typical user activities creation, investigating previous
traffic generators aligned with leveraging the proposed Benign User Profiler (BUP) [10]
tool designed to emulate genuine user behavior and produce realistic benign traffic data.

4.3.1. Available Benign User Traffic Generators

Ensuring clean and realistic benign and malicious data is crucial. However, prior
research has predominantly emphasized the quality of malicious data, neglecting the
significance of accurate ground truth for any detection system. The academic landscape
for traffic generation is somewhat limited, with existing studies dating back over a decade.
Based on investigation in this area, these are the available tools:
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• PackETH [39];
• Iperf [40];
• D-ITG [41];
• Ostinato [42];
• SolarWinds [43];
• Packet Sender [44];
• Nping [45];
• NetScan [46];
• TRex [47].

A recurring theme emerges when reviewing the various network traffic generation
tools. These tools are primarily geared towards benchmarking and stress testing rather
than simulating benign, real-world user behavior. While tools like “SolarWinds” or “Packet
Sender” offer valuable features for testing network performance, they lack a specific focus
on emulating authentic user interactions based on predefined profiles. The importance
of a benign traffic generator that accurately replicates user behavior cannot be overstated.
Within the broader context of constructing an ideal DDoS dataset, the imperative of faith-
fully replicating genuine user interactions takes center stage. Consequently, a primary
objective of this work is to design and implement a dedicated tool that addresses the
imperative of generating authentic benign traffic.

4.3.2. Proposed Benign User Traffic Generator

Comprehensive research is conducted across different domains to facilitate the selec-
tion of appropriate user behaviors. Drawing insights from previous works [48–53], here is
a comprehensive list of behaviors:

• Web Browsing (normal and admin user) Web browsing behavior encompasses various
types of websites that reflect normal user interactions on an average weekly day.
Drawing upon research insights from previous works [48,50,51], the following website
categories are integrated into the web browsing behavior:

– Shopping;
– Music streaming;
– Video watching;

– Social networks;
– Food;
– Taxi;

– Downloading;
– News checking.

To ensure authenticity, the Firefox browser is used for this study. This choice is driven
by its widespread usage, open-source nature, and reputation for user privacy and
security features [54]. Importantly, our approach involves using a real browser for
interactions rather than relying on scripted requests, distinguishing this work from
other benign user profiles and contributing to the reality of the generated traffic across
various online activities. Additionally, factors like the number of open tabs, time of
the day, and time spent on each website [48] are considered for a comprehensive and
accurate generation of benign network traffic.

• Emailing (normal and admin user)
The Gmail web server is selected as the primary platform for simulating email-
related behaviors, including sending and receiving. This decision is grounded in
the widespread use of Gmail, ensuring that the benign network traffic generated
accurately reflects typical email interactions. Configuring users to send emails to each
other at regular intervals ensures a controlled and reliable simulation of both sending
and receiving activities. Additionally, the selected approach allows the attachments for
each email and provides a comprehensive representation of benign traffic associated
with email communication.
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• Systemic (normal and admin user)
This category pertains to the traffic related to operating system (OS) services. The
choice to focus on systemic activities stems from the need to capture network traffic
associated with routine system-level operations. The rationale behind prioritizing
systemic activities is capturing network traffic related to routine system-level opera-
tions. It is crucial to clarify that this approach does not involve generating such traffic;
instead, the natural network activity of the OS on each machine is enabled for routine
service updates and other essential functions. This intentional focus contributes to the
dataset’s authenticity, facilitating a more comprehensive evaluation of DDoS detection
methods in routine system-level operations scenarios.

• Command Line (admin user)
This category explicitly addresses admin user behaviors and involves activities re-
lated to the Linux terminal. It encompasses tasks such as updating package lists,
installing packages, creating, modifying, and deleting directories and files, and other
administrative tasks. Simulating these command-line activities generates benign net-
work traffic representative of the administrative functions carried out through the
terminal interface.

• SSH or Remote Command Line (admin user)
Like the command-line activity, the SSH or remote command-line category involves
executing commands through an SSH session to a remote machine. This distinct
category acknowledges the unique nature of remote command-line operations. These
interactions are simulated to generate benign network traffic representative of admin-
istrative tasks conducted remotely, thereby enhancing the authenticity of generating
the benign traffic across diverse scenarios.

• File Transfer, FTP server (admin user)
This category is dedicated to activities related to FTP operations and focuses on benign
network traffic associated with file transfers. Different file sizes and formats are
simulated for both downloading from and uploading to an FTP server. This part
ensures comprehensive coverage of everyday file transfer activities associated with
administrative tasks.

• File Transfer, SCP (admin user)
This category addresses secure file transfers between different machines using SCP.
While SCP is associated with SSH, we make it a separate category. Simulating sending
and receiving files with various formats and sizes to and from another machine allows
us to generate benign network traffic that accurately reflects the secure file transfer
activities associated with machine-to-machine interactions. This approach enhances
the authenticity of benign traffic generation and contributes to a comprehensive
understanding of secure file transfer activities in admin user behaviors.

4.3.3. Benign Scenarios

This subsection delves into characterizing general benign scenarios considered during
ordinary operations by regular and admin users within the victim network. Figure 3 shows
a sample of the benign scenarios for a regular Windows user (see Appendix A). The new
dataset includes two days of pure benign data. Notably, the benign scenarios remain
consistent across all days, including attack days, ensuring uniformity in benign behavior,
a practice mirroring real-world scenarios, where consistent user behavior is maintained
during both benign and challenging periods.
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Figure 3. An example of a benign user behavior profile.

4.4. Data Capture

This subsection elucidates the data-capture process, which spans from 09:00 to 17:00
daily. Table 1 furnishes detailed information regarding the captured data, delineating the
specific days allocated for benign and adversarial traffic capture. The data highlights a
significant trend, indicating that over 90 percent of all user behavior on the network side,
irrespective of the specific activity, is associated with the TCP protocol. This prominence un-
derscores the importance of analyzing TCP behavior and implementing effective methods
to mitigate potential malicious activities.

Table 1. Captured data information.

Date # of IP Packets # of TCP Packets # of UDP Packets

Thursday 14 December 37,552,636 (99.75%) 35,213,784 (93.54%) 2,335,531 (6.20%)

Saturday 16 December 38,823,009 (99.81%) 36,151,292 (92.94%) 2,666,822 (6.86%)

Monday 18 December 28,302,904 (99.85%) 24,628,272 (86.89%) 3,671,949 (12.95%)

Tuesday 19 December 23,550,922 (99.89%) 21,653,847 (91.84%) 1,890,837 (8.02%)

Sum of All 128,229,471 117,647,195 10,565,139

4.5. Data Labeling (CSV File Generation)

Given the raw data’s intricate nature, sophisticated packet analysis techniques are
essential. This involves scrutinizing the packet-level information to extract relevant features
that can offer a clear perspective on the data’s underlying behavior and characteristics. The
aim is to transform the raw packets into a well-organized data sheet that not only aids
understanding but also facilitates the application of learning-based algorithms.

For this analysis, a thorough evaluation of publicly available network traffic analyzers
was conducted, including NTLFlowLyzer [11], CICFlowMeter [33], NFStream [55], and
others. After a diligent investigation and comparison, it was concluded that NTLFlowLyzer
was the most suitable choice for this work. The decision to select NTLFlowLyzer was based
on its comprehensive feature set, impressive performance metrics, and notable capability to
handle and analyze cloud traffic effectively, as all the packets have at least one layer of the
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VXLAN encapsulation because of traffic mirroring. This tool aligns well with the research
objectives, providing a robust platform for examining network data.

The findings are presented by organizing the analyzed data into Tables 2 and 3. These
tables contain information in the form of generated CSVs detailing the data per label and
activity. A distinctive label named “suspicious” is introduced in the tables. This label is
assigned to activities that do not align with predefined benign or attack scenarios. The
labeling of attack data is determined based on the timeline of the attacks, and the labeling
of benign data is based on purely benign days’ data. Data falling outside of these categories
are labeled as “suspicious”.

Table 2. Analyzed data information; distribution of labels across different days.

Date # of Benign Flows # of Attack Flows # of Suspicious Flows Sum of All Flows

Thursday 14 December 105,087 0 0 105,087

Saturday 16 December 189,678 0 0 189,678

Monday 18 December 68,444 (∼21%) 220,276 (∼69%) 31,810 (∼10%) 320,530

Tuesday 19 December 49,990 (∼58%) 8193 (∼10%) 27,296 (∼32%) 85,479

Sum of All Flows 413,199 (∼59%) 228,469 (∼33%) 59,106 (∼8%) 700,774

Table 3. Analyzed data information based on flow count, distribution of activities across different days.

ID Activity Thursday Saturday Monday Tuesday Sum

1 Benign 85,853 159,007 28,746 28,678 302,284

2 Benign-SSH 1333 1410 120 122 2985

3 Benign-FTP 329 97 28 29 483

4 Benign-Email-Receive 480 458 245 212 1395

5 Benign-Email-Send 596 558 442 342 1938

6 Benign-Systemic 2814 14,333 17,590 13,337 48,074

7 Benign-Web Browsing
HTTP-S 10,471 12,603 21,114 7084 51,272

8 Benign-TELNET 3211 1212 159 186 4768

9 Suspicious - - 31,810 27,296 59,106

10 Attack-TCP-Valid-SYN - - 8043 - -

11 Attack-TCP-BYPass-V1 - - 138,368 - -

12 Attack-Killall-v2 - - 6033 - -

13 Attack-TCP-IGMP - - 7251 - -

14 Attack-TCP-SYN - - 6953 - -

15 Attack-Killer-TCP - - 6254 - -

16 Attack-TCP-Control - - 5744 - -

17 Attack-TCP-Flag-MIX - - 7416 - -

18 Attack-TCP-Flag-SYN - - 7845 - -

19 Attack-TCP-Flag-ACK - - 10,683 - -

20 Attack-TCP-Flag-SYN-ACK - - 8204 - -

21 Attack-TCP-Flag-ACK-PSH - - 7482 - -
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Table 3. Cont.

ID Activity Thursday Saturday Monday Tuesday Sum

22 Attack-TCP-Flag-RST-ACK - - - 1445 -

23 Attack-TCP-Flag-SYN-TFO - - - 3631 -

24 Attack-TCP-Flag-SYN-TIME - - - 1360 -

25 Attack-TCP-Flag-OSYN - - - 867 -

26 Attack-TCP-Flag-OSYNP - - - 890 -

5. Proposed Traffic Characterization Model

The section presents a new traffic characterization model designed to enhance the
efficiency of identifying diverse benign and malicious activities within a network. The
model’s architecture, depicted in Figure 4, presents a multi-layered approach to improve
the accuracy of activity classification while addressing various practical considerations,
including complexity and interoperability. Adopting a multi-layered structure comprising
classification and identification layers is rooted in balancing computational efficiency,
resource utilization, and model performance. This segmentation allows for streamlined
processing and optimized resource allocation throughout the classification pipeline.

Classification Layer

Attack activityBenign activity

Su
sp

ic
io

us

Considering the
Label

Training with
corresponding label data

System Output

Training with all data

Identification Layer

Considering the
Activity

Ben
ign la

bel
Attack label

Figure 4. Proposed model.

Machine learning (ML) algorithms have primarily been used to learn benign and
malicious behaviors. In contrast to employing deep learning (DL)-based architectures, the
chosen model architecture emphasizes interoperability and transparency, which are crucial
considerations in industry collaborations. While DL-based approaches offer compelling
capabilities, their integration within industry settings can present challenges related to com-
patibility and interpretability. Furthermore, DL-based algorithms may require extensive
labeled data for training, making them less feasible in scenarios with limited annotated
datasets. We aim to provide industry stakeholders with clear insights into the decision-
making processes underlying activity classification by opting for a more interpretable
model architecture.

In the proposed model, the initial layer focuses on training with labeled data to estab-
lish the classification of each input. Subsequently, a dual-path architecture is implemented
within the second layer, featuring two distinct models. One model is exclusively trained
with benign data, while the other is trained solely with attack data. The training process
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in the second layer is centered around considering the specific activity associated with
the input. If the first layer classifies the input label as benign, the subsequent path directs
the input to the benign model. Conversely, if the first layer identifies the input label as
an attack, the input is routed to the corresponding attack model. In cases where the first
layer outputs a suspicious label, the activity is similarly classified as suspicious. Ultimately,
the final output of the system corresponds to the identified activity based on the cascaded
processing in the multi-layered structure.

The proposed dual-path architecture within the second layer further enhances the
model’s flexibility and interpretability. The system can effectively distinguish between
normal and malicious network activities by training separate models exclusively with
benign and attack data. This approach mitigates the risk of overfitting and addresses con-
cerns regarding the black-box nature of DL-based algorithms. In conclusion, the proposed
traffic characterization model offers a sophisticated approach to distinguishing activities
within network traffic. Its multi-layered structure balances computational efficiency with
classification accuracy, while considerations of interoperability and interpretability ensure
its suitability for real-world applications.

6. Experimental Results

This section delves into the comprehensive exploration of the experimental results. It
commences with an analysis of the results of feature selection. Subsequently, it explains the
implementation of the proposed model. Following this, the experiment scenarios are eluci-
dated. Finally, the selected features are fed into the learning algorithms for classification
and identification across varied experiment scenarios.

6.1. Feature Selection

This section comprehensively explores three key algorithms: analysis of variance (ANOVA),
information gain, and ensemble learning with the extra tree classifier. Table 4 presents the
results of the selected features for each algorithm based on the label classification.

Table 4. Selected features across different algorithms. F: forward, B: backward, D: delta, T: time, L:
length.

1st 10 Features 2nd 10 Features 3rd 10 Features 4th 10 Features

Analysis of
Variance

(ANOVA)

max hdr byte,
min hdr byte,

mean hdr byte,
med hdr byte,

mode hdr byte,
F max hdr byte,
F min hdr byte,

F mean hdr byte,
F std hdr byte,
F med hdr byte

F cov hdr byte,
F mode hdrbyte,
F var hdr byte,
B std hdr byte,
B cov hdr byte,
B var hdr byte,
F init win byte,
B init win byte,
rst flag counts,

B rst flag counts

psh flag % in total,
rst flag % in total,

F psh flag % in total,
F syn flag % in total,
B psh flag % in total,

F psh flag % in F pkts,
B psh flag % in B pkts,
B rst flag % in B pkts,

B pkts IAT mean,
B pkts IAT max

B pkts IAT min,
B pkts IAT total,
B pkts IAT med,

B pkts IAT mode,
handshake duration,

handshake state,
mean B pkts DT,
med B pkts DT,
skew pkts DL,

mode F pkts DL

Information
Gain

duration,
total hdr byte,
max hdr byte,
min hdr byte,

mean hdr byte,
med hdr byte,

mode hdr byte,
F total hdr byte,
F max hdr byte,
F min hdr byte

F mean hdr byte,
F med hdr byte,

F mode hdr byte,
F init win byte,

pkts rate,
B pkts rate,
F pkts rate,

syn flag % in total,
ack flag % in total,
F syn flag % in total

pkts IAT mean,
packet IAT max,
packet IAT min,
packet IAT total,

pkts IAT med,
pkts IAT mode,

F pkts IAT mean,
F pkts IAT max,
F pkts IAT min,
F pkts IAT total

F pkts IAT med,
F pkts IAT mode,
B pkts IAT total,

handshake duration,
mean pkts DT,
var pkts DT,
std pkts DT,

med pkts DT,
med B pkts DT,
med F pkts DT
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Table 4. Cont.

1st 10 Features 2nd 10 Features 3rd 10 Features 4th 10 Features

Extra
Tree

total hdr byte,
max hdr byte,
min hdr byte,

mean hdr byte,
med hdr byte,

mode hdr byte,
F total hdr byte,
F max hdr byte,
F min hdr byte,
F mean hdr byte

F med hdr byte,
F mode hdr byte,
F init win byte,
B init win byte,

pkts rate,
B pkts rate,
F pkts rate,

rst flag counts,
B rst flag counts,

syn flag % in total

rst flag % in total,
F syn flag % in total,
B rst flag % in total,

F psh flag % in F pkts,
F syn flag % in F pkts,
B psh flag % in B pkts,

pkts IAT mean,
packet IAT max,
packet IAT min,
packet IAT total

pkts IAT med,
pkts IAT mode,

F pkts IAT mean,
F pkts IAT max,
F pkts IAT min,
F pkts IAT total,
F pkts IAT med,

F pkts IAT mode,
B pkts IAT total,
B pkts IAT mode

6.2. Selecting and Implementing the Learning Algorithms

As the random forest (RF) demonstrates adeptness in handling multiple classes, ac-
commodating diverse feature sets, and robustly managing imbalanced class distributions,
this algorithm was selected for each layer in the proposed model. So, the model will
be suitable for addressing the complexity inherent in distinguishing between 8 benign,
17 attack, and 1 suspicious activity categories. The ensemble nature of RF, which aggregates
predictions from various decision trees, enhances the model’s ability to discern intricate
patterns within each activity class. Given the hierarchical architecture characterized by
cascaded processing across multiple layers, the ensemble learning paradigm of RF proves
instrumental in accurately classifying the 26 diverse activity classes. This amalgamation
of hierarchical modeling and ensemble learning contributes significantly to the overall
efficiency of activity identification within the multi-layered framework.

6.3. Experiment Scenarios and Performance Results

Seven distinct experiment scenarios, referred to as tasks, have been defined for a
thorough assessment of the proposed model, as detailed below:

• Task 1: It involves classifying data into three categories: benign, suspicious, and attack.
• Task 2: It focuses on identifying specific attack activities within the dataset.
• Task 3: It concentrates on the identification of different benign activities.
• Task 4: It involves identifying both suspicious and benign activities.
• Task 5: It extends the identification challenge to both suspicious and attack activities.
• Task 6: It entails identifying attack activities and the benign label.
• Task 7: The final task encompasses the broadest identification challenge, requiring the

model to classify all activities in the dataset.

Success in these seven tasks is imperative for any model working with this dataset.
The model must effectively learn each label and activity to understand the underlying
network characteristics comprehensively. Additional experiments were conducted to
gauge the model’s performance compared to alternative approaches, employing four well-
established machine learning algorithms: naive Bayes (NB), support vector machine (SVM),
random forest (RF), and XGBoost. Table 5 summarizes the results obtained from each task,
providing a comparative overview of the performance of the proposed model against the
four alternative machine learning algorithms. This comparative analysis simplifies the
assessment of the proposed model’s effectiveness in handling the complexity and diversity
of the activity identification task.
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Table 5. Performance results with top 40 features.

Task Model Precision Recall F1-Score Model Precision Recall F1-Score

NB 0.71 0.46 0.48 Logistic Reg. 0.62 0.62 0.62

SVM 0.56 0.60 0.58 KNN 0.91 0.91 0.91

RF 0.94 0.94 0.94 Decision Tree 0.84 0.85 0.84

XGBoost 0.94 0.94 0.94 Extra Tree 0.94 0.94 0.94

Task 1

Proposed 0.94 0.94 0.94 Bagging 0.93 0.94 0.93
NB 0.55 0.58 0.56 Logistic Reg. 0.58 0.59 0.58

SVM 0.55 0.58 0.56 KNN 0.75 0.70 0.72

RF 0.79 0.72 0.75 Decision Tree 0.71 0.69 0.70

XGBoost 0.85 0.71 0.76 Extra Tree 0.75 0.75 0.75

Task 2

Proposed 0.79 0.77 0.78 Bagging 0.80 0.72 0.75
NB 0.76 0.13 0.10 Logistic Reg. 0.58 0.49 0.53

SVM 0.50 0.45 0.48 KNN 0.89 0.88 0.89

RF 0.96 0.94 0.95 Decision Tree 0.85 0.82 0.83

XGBoost 0.96 0.95 0.95 Extra Tree 0.93 0.93 0.93

Task 3

Proposed 0.96 0.96 0.96 Bagging 0.94 0.92 0.93
NB 0.64 0.11 0.08 Logistic Reg. 0.45 0.49 0.47

SVM 0.37 0.40 0.38 KNN 0.91 0.90 0.91

RF 0.95 0.92 0.93 Decision Tree 0.86 0.84 0.85

XGBoost 0.95 0.94 0.94 Extra Tree 0.95 0.92 0.93

Task 4

Proposed 0.96 0.92 0.93 Bagging 0.93 0.93 0.93
NB 0.41 0.46 0.43 Logistic Reg. 0.51 0.56 0.53

SVM 0.41 0.46 0.43 KNN 0.69 0.69 0.69

RF 0.75 0.73 0.73 Decision Tree 0.61 0.67 0.64

XGBoost 0.78 0.74 0.74 Extra Tree 0.74 0.74 0.74

Task 5

Proposed 0.88 0.84 0.86 Bagging 0.72 0.71 0.71
NB 0.58 0.29 0.19 Logistic Reg. 0.37 0.48 0.40

SVM 0.35 0.50 0.40 KNN 0.85 0.85 0.85

RF 0.88 0.86 0.87 Decision Tree 0.81 0.82 0.81

XGBoost 0.91 0.86 0.87 Extra Tree 0.84 0.86 0.85

Task 6

Proposed 0.97 0.96 0.97 Bagging 0.82 0.80 0.81
NB 0.51 0.27 0.17 Logistic Reg. 0.48 0.63 0.53

SVM 0.29 0.46 0.35 KNN 0.84 0.84 0.84

RF 0.85 0.85 0.85 Decision Tree 0.74 0.78 0.75

XGBoost 0.86 0.86 0.85 Extra Tree 0.85 0.86 0.85

Task 7

Proposed 0.91 0.91 0.91 Bagging 0.84 0.84 0.84

7. Analysis and Discussion

This section analyzes the experimental results of the previous section.

7.1. Feature Selection Analysis

This subsection carefully analyzes feature selection, examining each algorithm and
exploring selected and non-selected feature categories in detail.
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7.1.1. Selected Features Analysis

This subsection explores each category of selected features, which are then amalga-
mated for a more comprehensive analysis.

• Header-Related Features
Examining header-related features across three feature selection algorithms unveils a
consistent trend where the top 10 selected features consistently pertain to header bytes.
This initiates a detailed analysis focusing on header bytes in this context, examining
specific scenarios and characteristics.
The TCP header values exhibit limited patterns for each network flow in benign sce-
narios. For instance, in a benign context, a standardized handshake procedure occurs
at the beginning of each flow, resulting in uniform header values. Any deviations or
anomalies in these header-related patterns, particularly those at the onset of a flow,
become easily detectable. Such anomalies include DDoS TCP handshake, DDoS TCP
SYN (various TCP SYN scenarios), and DDoS TCP SYN-ACK, where attackers aim
to exhaust system resources by initiating and keeping open connections to prevent
benign connections from establishing. Notably, features like the handshake state
and flow duration offer valuable insights into the underlying behavior and nature of
the flow.
The selected features underscore the significance of both the header and handshake
categories in effectively distinguishing between DDoS attacks and benign data. How-
ever, more than using these features alone may be required in complex attack scenarios
employing a customary handshake. Additional features become necessary in such
cases. The prominence of header-related features arises from the fact that, in general
DDoS scenarios, attackers often employ predefined packets or requests, increasing
the likelihood of similar header-related options. This similarity simplifies the differ-
entiation between DDoS and benign data. For instance, a SYN flood might generate
numerous connection requests to a destination port while changing only the source
port value in the TCP header.
Furthermore, as detailed in Section 4.2, a significant proportion of DDoS attacks in
this dataset manipulate header values. Consequently, features related to the TCP
header emerge as the most informative. Notably, among the top 40 selected features,
approximately 75% are directly derived from header values. These feature categories
include header bytes, init win bytes, flag percentage, and handshake-related metrics.
In contrast, categories such as delta time, IAT, and packet rate, which are not directly
linked to the TCP header, contribute to a comprehensive approach to detecting TCP-
based DDoS attacks.
This underscores the importance of considering all aspects of the TCP header for
effective detection. For example, a TCP-ACK flood attack inundates the target with a
high volume of ACK requests, disrupting the flag distribution within header bytes
compared to regular traffic.

• Flag-related features
DDoS attacks often manipulate TCP flags, such as SYN, RST, and PSH, to disrupt
standard communication patterns. Within this category, anomalies in the distribution
of flags can signal specific attack types. For instance, an abnormal SYN–ACK ratio
may indicate a TCP-SYN flood attack, while a dynamic flag distribution strategy could
mimic standard traffic patterns, challenging detection mechanisms. This highlights the
importance of analyzing flag percentages for a nuanced understanding of attack tactics.

• Delta-time-related features
Attackers disrupt regular communication by introducing variations in the time inter-
vals between successive packets. Unusual values in “delta time” features can indicate
irregular packet transmission patterns. For example, pulsing DDoS attacks involve
rhythmic variations in inter-packet delta times, making it challenging for defenders
to predict attack patterns. Conversely, specific DDoS attacks use consistently low
delta time between packets to maximize traffic volume and increase the likelihood of
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successful disruption. Identifying and analyzing these delta time patterns are crucial
to robust detection mechanisms.

• Inter-arrival time (IAT)-related features
The inter-arrival time reflects variations in packet transmission intervals. Bursty DDoS
traffic exhibits irregular spikes in packet transmission, causing variations in inter-
arrival times. Recognizing and distinguishing these bursts is critical for identifying
potential attacks amidst benign traffic. Moreover, sophisticated DDoS attacks may
involve coordinated sequences with specific IAT patterns, such as rapid bursts fol-
lowed by brief periods of inactivity. Understanding and detecting these coordinated
sequences enhances the accuracy of identifying intricate attack strategies.

• Rate-related features
DDoS attacks typically exhibit abnormally high packet rates to cause network conges-
tion and service disruption. Elevated values in the “packet rate” feature can signal the
presence of a DDoS attack, especially when compared to the baseline packet rates ob-
served during regular network activity. This can indicate an adaptive strategy, where
attackers dynamically adjust the packet rate during an attack to adapt to changing net-
work conditions or evade static detection thresholds. Conversely, some DDoS attacks
intentionally maintain a low and stealthy packet rate to avoid detection. Identifying
and analyzing deviations from the expected baseline requires a nuanced analysis of
packet rate dynamics.

• All together
The consistent presence of anomalies across multiple feature categories collectively
enhances attack detection accuracy. Recognizing patterns across these diverse features
contributes to a more robust detection mechanism. Examining the correlations between
different feature categories reveals more comprehensive attack signatures. For instance,
a high packet rate combined with abnormal flag percentages may indicate a sophis-
ticated DDoS strategy. Understanding these interdependencies allows for a deeper
understanding of the evolving nature of attacks and improves detection accuracy.
Moreover, attackers may dynamically adjust their strategies throughout an attack. Con-
tinuous monitoring of features enables the identification of evolving attack patterns.
A nuanced understanding of the dynamic nature of attacks is becoming imperative for
developing adaptive detection mechanisms capable of responding to emerging threats
in real-time. Incorporating diverse, informative feature categories into consideration
provides a holistic and detailed perspective on network traffic. This inclusive ap-
proach empowers the development of robust and adaptive detection models adept at
identifying various DDoS attack tactics. By comprehensively examining correlations
and evolving patterns, these models prove effective in staying ahead of attackers and
responding dynamically to the intricate landscape of cyber threats.

• Online detection strategy
In an online detection system, where computing a single feature value for a potentially
high number of open flows can be resource-intensive and time consuming, it is crucial
to adopt an approach that optimizes both time and resources. The strategy involves a
structured, multi-layered framework, where features are computed in an order that
facilitates early detection with minimal computational cost.
The first layer of this framework prioritizes features that are easy to calculate and
contribute to early detection. Notably, features associated with the handshake sce-
nario emerge as critical components of this initial layer. The rationale behind this
prioritization is twofold. Firstly, in the initial stages of a network flow, decisions
about its malicious nature cannot be accurately made by calculating features such as
header bytes mean or packet rate. Secondly, by focusing on features related to the
handshake process, the system can efficiently identify and halt potentially malicious
incoming traffic lacking a valid handshake process. This early intervention conserves
system resources by avoiding calculating additional feature values for such connec-
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tions. Furthermore, this proactive approach ensures that more resources are available
for benign users.
Another set of informative features for early detection includes “init win bytes”.
Attackers may manipulate the initial window size in TCP packets during DDoS attacks
to impact the target’s resource utilization. Anomalies or irregularities in the values
of the “init win bytes” feature serve as indicators of potential attempts to exploit
vulnerabilities, overwhelm network resources, or establish malicious connections.
Beyond the early detection phase, attention shifts to flows characterized by a normal
handshake process, usual flags, and regular features. A normal handshake process
denotes that all TCP steps have been executed within a reasonable timeframe. The
system monitors and calculates the other most informative features (other selected
features) for such flows.

7.1.2. Not-Selected Features Analysis

In the context of network traffic analysis, the absence of certain features, such as packet
delta length, header delta length, and payload delta length, can provide valuable insights
into the nature of the data being examined. While the previous analysis has covered
selected features, addressing why these specific features may be absent or are deemed
non-informative for the given task is essential.

Firstly, the absence of “packet delta length” as a significant feature could be attributed
to its limited relevance in DDoS detection and identification. Packet delta length typically
measures the difference in length between consecutive packets. The packet delta length
may fluctuate considerably when a network experiences diverse benign activities, protocols,
and usage patterns. This variability can render it challenging to establish a reliable baseline
for distinguishing between normal and malicious traffic. Additionally, for TCP-based DDoS
attacks, attackers may strategically manipulate packet lengths to mimic legitimate traffic,
further diminishing the discriminatory power of this feature.

Similarly, the exclusion of “header delta length” could be justified by its potential lack
of discriminatory value in identifying DDoS attacks. “Header delta length” typically refers
to changes in the lengths of headers between successive packets. However, in the case
of TCP-based DDoS attacks, attackers often craft their packets to maintain valid header
structures, making it challenging to differentiate attack traffic from benign traffic based
solely on header length variations. As a result, this feature might not provide meaningful
insights into distinguishing malicious activities.

Furthermore, the decision not to consider “payload delta length” could be reasoned
by the inherent challenges associated with payload analysis in DDoS detection. Payloads
in network traffic can exhibit significant diversity due to the vast array of benign activities
and protocols. Attempting to identify DDoS attacks based on payload characteristics
becomes impractical in such scenarios, as attackers often employ valid payload data
to evade detection at the application layer. The similarity between benign and attack
payloads under the TCP protocol further diminishes the utility of payload delta length as a
discriminative feature.

In summary, the analysis’s absence of “packet delta length”, “header delta length”,
and “payload delta length” indicates a thoughtful consideration of their limited suitability
for DDoS detection in the given context. The intricate nature of network traffic, the presence
of diverse benign activities, and the tactics employed by attackers in crafting their traffic
collectively lead us to conclude that these features may not offer meaningful insights or
reliable discrimination in identifying DDoS attacks based on the TCP protocol.

7.2. Performance Analysis

In light of the obtained results, it can be deduced that the observed suspicious activi-
ties may be closely associated with the attack category. The analysis indicates a notable
discrepancy in performance across various tasks, with particular emphasis on the task
involving the identification between attack and suspicious activities. Across all models con-
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sidered, this specific task demonstrated suboptimal performance, suggesting a challenge in
accurately distinguishing between these two categories.

Concurrently, it is noteworthy that identifying benign labels and attack activities
exhibited a commendable performance across the models under scrutiny. This disparity
in task performance underscores the complexity involved in identifying and classifying
potentially malicious activities, especially when distinguishing between attacks and ac-
tivities categorized as suspicious. The findings imply a potential improvement in model
robustness and training strategies, explicitly targeting the nuanced differentiation between
attack and suspicious patterns.

The superior performance of the proposed model, as contrasted with traditional
solutions, can be attributed to a deliberate design choice involving the utilization of models
that concentrate on a reduced number of classes. In direct contrast to the conventional
approach of incorporating all classes within a singular model, the proposed methodology
involves the creation of individual models, each dedicated to a subset of classes. This
strategic segmentation allows each model to specialize in and precisely learn the distinct
behaviors associated with a limited number of classes. Consequently, the models achieve a
more nuanced understanding of the targeted classes, avoiding the challenge of moderately
learning many classes, which often leads to under-fitting.

The approach’s efficacy is underscored by the premise that the models are better
equipped to capture and comprehend the intricacies of class behaviors by grouping differ-
ent classes and employing a dedicated classifier for each group. This preventive measure
against under-fitting contributes significantly to the enhanced overall performance ob-
served in the proposed model. The findings advocate a paradigm shift towards more
focused and specialized models, demonstrating the potential benefits of class-specific learn-
ing in developing robust, high-performing solutions. Further exploration into the dynamics
of class grouping and its impact on model generalization may offer valuable insights for
refining and optimizing future iterations of the proposed methodology.

7.3. Addressing Previous Shortcomings

This subsection discusses how this work has effectively addressed the identified
shortcomings outlined in Section 2.2:

1. Imbalanced class distribution: The dataset achieves a more balanced distribution,
with a ratio of 60% benign to 40% non-benign data, including 8% labeled as suspicious.
This balance ensures a more representative dataset for training and evaluation.

2. Limited diversity of attacks: This work incorporates a wide range of DDoS attacks,
totaling 17 different attack types, surpassing the diversity found in existing datasets.
This ensures comprehensive coverage of various attack scenarios and enhances the
fidelity of the new dataset.

3. Outdated threat scenarios: A thorough analysis was conducted, leveraging reports
from Microsoft [56–58] and Cloudflare [59] to identify and prioritize recent attack
trends. Additionally, utilizing a third-party service for attack execution ensures the
incorporation of up-to-date attack methodologies, addressing concerns regarding
outdated threat scenarios.

4. Lack of realistic network traffic: The proposed approach includes the development of
a Benign User Traffic generator capable of producing realistic benign user data. This
contrasts with previous approaches that relied on simulated or less accurate benign
data, thereby enhancing the realism of the new dataset.

5. Absence of encrypted traffic: The benign traffic generator is configured to generate
diverse traffic, including encrypted traffic, mirroring real-world network scenarios
more accurately. This ensures that the dataset encompasses the complexities of
encrypted communication, which are often overlooked in previous datasets.

6. Insufficient labeling accuracy: Benign and attack scenarios were meticulously sched-
uled to ensure precise labeling, supported by experimental results validating the
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accuracy of the labeling process across different algorithms. This meticulous approach
enhances the reliability and trustworthiness of the new dataset.

7. Limited incorporation of user behavior: The analysis of previous works in user
network behavior informs the configuration of diverse user profiles within the benign
traffic generator. This includes various behaviors such as web browsing, file transfer,
and email checking, ensuring a more comprehensive representation of user activity
within the dataset.

8. Incompatibility with modern protocols: The generated dataset mirrors realistic net-
work traffic, encompassing a wide array of protocols, including modern ones like
QUIC, DNS, and HTTPS. This ensures compatibility with modern network environ-
ments, addressing concerns about protocol compatibility present in previous datasets.

9. Limited exploration of low-rate DDoS attacks: The new dataset includes diverse
attack strategies, ranging from low-rate to high-rate attacks, as evidenced by Table 3.
This comprehensive coverage ensures that the dataset adequately represents the
variability of DDoS attack intensities encountered in real-world scenarios.

10. Lack of realistic DDoS traffic variability: Utilizing a third-party service for DDoS
attack execution ensures the incorporation of realistic attack data with diverse strate-
gies. This contrasts with previous approaches that may have utilized packet generator
tools without specific attack strategies, enhancing the variability and realism of the
new dataset.

In conclusion, this research addresses various shortcomings present in existing datasets
related to capturing malicious events in real-world scenarios. The fidelity and relevance of
the newly generated dataset for studying network security and DDoS attack detection have
been significantly improved through meticulous analysis and methodological enhance-
ments. By achieving a more balanced class distribution, incorporating diverse attack types,
prioritizing up-to-date threat scenarios, and ensuring the inclusion of realistic network traf-
fic, diverse user behaviors, and compatibility with modern protocols, the dataset provides a
comprehensive representation of real-world network environments. The rigorous approach
to labeling accuracy and inclusion of low-rate DDoS attacks further contribute to the rich-
ness and variability of the dataset, enabling more robust evaluations and benchmarking
of detection algorithms. These enhancements underscore the commitment to advancing
state-of-the-art network security research and providing valuable resources for developing
and evaluating effective DDoS mitigation strategies.

7.4. Comparison with Previous Datasets

Using the established methodology outlined in the work of [34], we employed a
comprehensive framework for evaluating key metrics to compare the datasets. The results
of this comparative analysis are presented in Table 6, revealing compelling insights into
the performance of the new dataset relative to its predecessors in the last decade. The
findings demonstrate that the new dataset surpasses all other datasets examined across
various criteria, underscoring its superiority in effectively capturing and representing cloud
network traffic dynamics.

Table 6. Datasets comparison.

Dataset Date # Labels # Features Realistic
Traffic

Data Distribution
Benign–Malicious

Analyzer User
Profile

Cloud
Env.

ISCX2012 2012 6 18 ✗ 97-3 ISCXFlowMeter ✗ ✗

CTU-13 2013 14 84 ✓ - Argus-NetFlow ✗ ✗

UNSW-NB15 2015 10 157 ✗ 87-13 Argus-Bro-IDS ✗ ✗

CICIDS2017 2017 14 80 ✓ 78-22 CICFlowMeter ✓ ✗



Information 2024, 15, 195 23 of 27

Table 6. Cont.

Dataset Date # Labels # Features Realistic
Traffic

Data Distribution
Benign–Malicious

Analyzer User
Profile

Cloud
Env.

CSE-CIC-IDS2018 2018 15 80 ✓ 83-17 CICFlowMeter ✓ ✗

CIC-DDoS2019 2019 15 80 ✓ 10-90 CICFlowMeter ✓ ✗

SR-BH2020 2020 13 32 ✓ 58-42 Not Public ✗ ✗

CUPID 2022 2 80 ✗ 88-12 CICFlowMeter ✗ ✗

BCCC-cPacket-
Cloud-DDoS-2024

2024 26 322 ✓ 60-40 NTLFlowLyzer ✓ ✓

8. Conclusions and Future Works

Establishing reliable and publicly accessible DDoS evaluation datasets is paramount
for researchers and industry stakeholders. This paper explores the state-of-the-art gener-
ation of DDoS datasets, evaluates 16 publicly available datasets, and highlights 15 short-
comings across various perspectives. Following this, a comprehensive network dataset
creation roadmap is introduced along with generating a new cloud-based DDoS dataset
named BCCC-cPacket-Cloud-DDoS-2024 [9]. In summary, this paper aims to cover the
shortcomings in generating DDoS datasets and establish a robust foundation for advanced
research and development in the field by analyzing attack trends, benign traffic generation,
user behavioral profiling, and cloud infrastructure.

The experimental and analytical phases identify an optimal feature set to distinguish
between benign, suspicious, and DDoS attack traffic. This involves employing three distinct
feature selection algorithms, ANOVA, information gain, and extra tree, each approaching
the task uniquely. A new multi-layered detection model is designed and implemented to
classify various activities proficiently. The proposed model thoroughly evaluates the perfor-
mance and accuracy of the chosen features. Four well-known classifiers are implemented
and tested with the selected feature set to ensure a comprehensive assessment. Comparing
the performance of the proposed model with traditional approaches highlights its superior
effectiveness.

The approach will be enhanced by considering diverse features and data sources,
exploring different protocols and layers, including a broader range of attack types, and
factoring in benign user behavior. The analysis will be extended to other network types,
such as IoT and IIoT networks, and online detection mechanisms will be integrated for
real-time threat response.
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Appendix A

Table A1. Attack schedule.

Date Time Attack Target Target IP Capturer

Monday,
18 December

2023

9:00–9:20 (1) TCP-SYN
(Valid SYN) Windows-machine-1 3.96.128.96

(10.0.9.208)

35.183.206.0
(10.0.17.180)

9:30–9:50 (2) TCP-BYPass-V1 Linux-admin-1 99.79.45.168
(10.0.6.142)

10:00–10:20 (3) Killall-v2 Linux-webserver 15.222.45.224
(10.0.4.57)

10:32–10:52 (4) TCP-IGMP Windows-machine-2 35.182.194.19
(10.0.4.132)

11:00–11:20 (5) TCP-SYN Linux-admin-1 99.79.45.168
(10.0.6.142)

11:30–11:50 (6) Killer-TCP Windows-machine-4 35.183.15.52
(10.0.3.52)

13:00–13:20 (7) TCP-Control Linux-webserver 15.222.45.224
(10.0.4.57)

13:30–13:50 (8) TCP-MIX Linux-admin-1 99.79.45.168
(10.0.6.142)

14:00–14:20 (9) TCP-SYN
(syn flags only) Windows-machine-2 35.182.194.19

(10.0.4.132)

14:30–14:50 (10) TCP-ACK Windows-machine-3 3.99.186.200
(10.0.11.84)

15:00–15:20 (11) TCP-SYN-ACK Linux-webserver 15.222.45.224
(10.0.4.57)

15:30–15:50 (12) TCP-ACK-PSH Windows-machine-4 35.183.15.52
(10.0.3.52)

Tuesday,
19 December

2023

9:00–9:20 (13) TCP-RST-ACK Linux-webserver 15.222.45.224
(10.0.4.57)

3.99.150.239
(10.0.17.180)

9:30–9:50 (14) TCP-SYN-TFO Windows-machine-3 3.99.186.200
(10.0.11.84)

10:00–10:20 (15) TCP-SYN-TIME Linux-admin-1 99.79.45.168
(10.0.6.142)

10:50–11:10 (16) TCP-OSYN Windows-machine-1 3.96.128.96
(10.0.9.208)

11:20–11:40 (17) TCP-OSYNP Linux-webserver 15.222.45.224
(10.0.4.57)
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Table A2. Sample Benign schedule for a normal user (Windows).

Start Times Behavior Detail

09:00, 09:25, 09:50, 10:15, 10:40,
11:05, 11:30, 11:55, 12:20, 12:45,
13:10, 13:35, 14:00, 14:25, 14:50,
15:15, 15:40, 16:05, 16:30, 16:55

Email (Sending) All emails contain
attachments as well.

09:17, 09:42, 10:07, 10:32, 10:57,
11:22, 11:47, 12:12, 12:37, 13:02,
13:27, 13:52, 14:17, 14:42, 15:07,
15:32, 15:57, 16:22, 16:47, 17:12

Email (Reading) All emails contain
attachments as well.

09:40 Web Browsing (Music Streaming) It is a live stream.

12:30 Web Browsing (Video Watching) YouTube

09:05 Web Browsing (Video Watching) Continued with new video
after finishing each one.

09:40, 13:40 Web Browsing (News Checking) CBC.ca

10:00, 10:40, 14:20, 14:50,
15:20, 11:30, 12:03, 12: 36,

15:25, 15:35, 15:45
Web Browsing (Downloading)

File sizes: 5 GB, 228 MB,
4 MB, 4 MB, 4 MB, 1.7 KB,

1.7 KB, 1.7 KB, 100 MB,
100 MB, 100 MB

11:43 Web Browsing (Food) UberEats

10:02, 10:22, 10:25, 10:45 Web Browsing (Shopping) Amazon

13:30, 13:40 Web Browsing (Shopping) Bestbuy

15:13 Web Browsing (Social Media) LinkedIn

16:00 Web Browsing (Taxi) Uber
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